metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.21D14, (C2×C28)⋊23D4, (C2×Dic7)⋊7D4, (C22×D7)⋊5D4, (C22×D4)⋊2D7, (C22×C14)⋊8D4, C23⋊3(C7⋊D4), C7⋊3(C23⋊2D4), C14.68C22≀C2, C22.284(D4×D7), C2.27(C28⋊D4), C14.37(C4⋊1D4), C2.26(C28⋊2D4), (C22×C4).153D14, C2.7(C24⋊D7), C2.35(C23⋊D14), C14.131(C4⋊D4), C14.C42⋊46C2, (C23×C14).49C22, (C23×D7).25C22, C23.385(C22×D7), C2.35(Dic7⋊D4), (C22×C14).368C23, (C22×C28).396C22, C22.107(D4⋊2D7), (C22×Dic7).69C22, (D4×C2×C14)⋊12C2, (C2×C4)⋊5(C7⋊D4), (C2×D14⋊C4)⋊39C2, (C22×C7⋊D4)⋊2C2, (C2×C14).557(C2×D4), (C2×C23.D7)⋊12C2, C22.219(C2×C7⋊D4), (C2×C14).164(C4○D4), SmallGroup(448,757)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.21D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=1, f2=c, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >
Subgroups: 1588 in 322 conjugacy classes, 69 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C22×D4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C23⋊2D4, D14⋊C4, C23.D7, C22×Dic7, C22×Dic7, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C23×C14, C14.C42, C2×D14⋊C4, C2×C23.D7, C22×C7⋊D4, D4×C2×C14, C24.21D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22≀C2, C4⋊D4, C4⋊1D4, C7⋊D4, C22×D7, C23⋊2D4, D4×D7, D4⋊2D7, C2×C7⋊D4, C23⋊D14, C28⋊2D4, Dic7⋊D4, C28⋊D4, C24⋊D7, C24.21D14
(2 212)(4 214)(6 216)(8 218)(10 220)(12 222)(14 224)(15 85)(16 166)(17 87)(18 168)(19 89)(20 156)(21 91)(22 158)(23 93)(24 160)(25 95)(26 162)(27 97)(28 164)(30 181)(32 169)(34 171)(36 173)(38 175)(40 177)(42 179)(43 76)(44 104)(45 78)(46 106)(47 80)(48 108)(49 82)(50 110)(51 84)(52 112)(53 72)(54 100)(55 74)(56 102)(57 135)(59 137)(61 139)(63 127)(65 129)(67 131)(69 133)(71 201)(73 203)(75 205)(77 207)(79 209)(81 197)(83 199)(86 113)(88 115)(90 117)(92 119)(94 121)(96 123)(98 125)(99 202)(101 204)(103 206)(105 208)(107 210)(109 198)(111 200)(114 167)(116 155)(118 157)(120 159)(122 161)(124 163)(126 165)(141 196)(143 184)(145 186)(147 188)(149 190)(151 192)(153 194)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 127)(11 128)(12 129)(13 130)(14 131)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 97)(28 98)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 99)(54 100)(55 101)(56 102)(57 214)(58 215)(59 216)(60 217)(61 218)(62 219)(63 220)(64 221)(65 222)(66 223)(67 224)(68 211)(69 212)(70 213)(71 201)(72 202)(73 203)(74 204)(75 205)(76 206)(77 207)(78 208)(79 209)(80 210)(81 197)(82 198)(83 199)(84 200)(113 166)(114 167)(115 168)(116 155)(117 156)(118 157)(119 158)(120 159)(121 160)(122 161)(123 162)(124 163)(125 164)(126 165)(169 192)(170 193)(171 194)(172 195)(173 196)(174 183)(175 184)(176 185)(177 186)(178 187)(179 188)(180 189)(181 190)(182 191)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 29)(14 30)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 43)(57 194)(58 195)(59 196)(60 183)(61 184)(62 185)(63 186)(64 187)(65 188)(66 189)(67 190)(68 191)(69 192)(70 193)(71 159)(72 160)(73 161)(74 162)(75 163)(76 164)(77 165)(78 166)(79 167)(80 168)(81 155)(82 156)(83 157)(84 158)(85 104)(86 105)(87 106)(88 107)(89 108)(90 109)(91 110)(92 111)(93 112)(94 99)(95 100)(96 101)(97 102)(98 103)(113 208)(114 209)(115 210)(116 197)(117 198)(118 199)(119 200)(120 201)(121 202)(122 203)(123 204)(124 205)(125 206)(126 207)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 153)(136 154)(137 141)(138 142)(139 143)(140 144)(169 212)(170 213)(171 214)(172 215)(173 216)(174 217)(175 218)(176 219)(177 220)(178 221)(179 222)(180 223)(181 224)(182 211)
(1 211)(2 212)(3 213)(4 214)(5 215)(6 216)(7 217)(8 218)(9 219)(10 220)(11 221)(12 222)(13 223)(14 224)(15 126)(16 113)(17 114)(18 115)(19 116)(20 117)(21 118)(22 119)(23 120)(24 121)(25 122)(26 123)(27 124)(28 125)(29 180)(30 181)(31 182)(32 169)(33 170)(34 171)(35 172)(36 173)(37 174)(38 175)(39 176)(40 177)(41 178)(42 179)(43 206)(44 207)(45 208)(46 209)(47 210)(48 197)(49 198)(50 199)(51 200)(52 201)(53 202)(54 203)(55 204)(56 205)(57 135)(58 136)(59 137)(60 138)(61 139)(62 140)(63 127)(64 128)(65 129)(66 130)(67 131)(68 132)(69 133)(70 134)(71 112)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 108)(82 109)(83 110)(84 111)(85 165)(86 166)(87 167)(88 168)(89 155)(90 156)(91 157)(92 158)(93 159)(94 160)(95 161)(96 162)(97 163)(98 164)(141 196)(142 183)(143 184)(144 185)(145 186)(146 187)(147 188)(148 189)(149 190)(150 191)(151 192)(152 193)(153 194)(154 195)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 43 31 28)(2 27 32 56)(3 55 33 26)(4 25 34 54)(5 53 35 24)(6 23 36 52)(7 51 37 22)(8 21 38 50)(9 49 39 20)(10 19 40 48)(11 47 41 18)(12 17 42 46)(13 45 29 16)(14 15 30 44)(57 161 194 73)(58 72 195 160)(59 159 196 71)(60 84 183 158)(61 157 184 83)(62 82 185 156)(63 155 186 81)(64 80 187 168)(65 167 188 79)(66 78 189 166)(67 165 190 77)(68 76 191 164)(69 163 192 75)(70 74 193 162)(85 149 104 131)(86 130 105 148)(87 147 106 129)(88 128 107 146)(89 145 108 127)(90 140 109 144)(91 143 110 139)(92 138 111 142)(93 141 112 137)(94 136 99 154)(95 153 100 135)(96 134 101 152)(97 151 102 133)(98 132 103 150)(113 223 208 180)(114 179 209 222)(115 221 210 178)(116 177 197 220)(117 219 198 176)(118 175 199 218)(119 217 200 174)(120 173 201 216)(121 215 202 172)(122 171 203 214)(123 213 204 170)(124 169 205 212)(125 211 206 182)(126 181 207 224)
G:=sub<Sym(224)| (2,212)(4,214)(6,216)(8,218)(10,220)(12,222)(14,224)(15,85)(16,166)(17,87)(18,168)(19,89)(20,156)(21,91)(22,158)(23,93)(24,160)(25,95)(26,162)(27,97)(28,164)(30,181)(32,169)(34,171)(36,173)(38,175)(40,177)(42,179)(43,76)(44,104)(45,78)(46,106)(47,80)(48,108)(49,82)(50,110)(51,84)(52,112)(53,72)(54,100)(55,74)(56,102)(57,135)(59,137)(61,139)(63,127)(65,129)(67,131)(69,133)(71,201)(73,203)(75,205)(77,207)(79,209)(81,197)(83,199)(86,113)(88,115)(90,117)(92,119)(94,121)(96,123)(98,125)(99,202)(101,204)(103,206)(105,208)(107,210)(109,198)(111,200)(114,167)(116,155)(118,157)(120,159)(122,161)(124,163)(126,165)(141,196)(143,184)(145,186)(147,188)(149,190)(151,192)(153,194), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,127)(11,128)(12,129)(13,130)(14,131)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,99)(54,100)(55,101)(56,102)(57,214)(58,215)(59,216)(60,217)(61,218)(62,219)(63,220)(64,221)(65,222)(66,223)(67,224)(68,211)(69,212)(70,213)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,197)(82,198)(83,199)(84,200)(113,166)(114,167)(115,168)(116,155)(117,156)(118,157)(119,158)(120,159)(121,160)(122,161)(123,162)(124,163)(125,164)(126,165)(169,192)(170,193)(171,194)(172,195)(173,196)(174,183)(175,184)(176,185)(177,186)(178,187)(179,188)(180,189)(181,190)(182,191), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,29)(14,30)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,43)(57,194)(58,195)(59,196)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,155)(82,156)(83,157)(84,158)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,99)(95,100)(96,101)(97,102)(98,103)(113,208)(114,209)(115,210)(116,197)(117,198)(118,199)(119,200)(120,201)(121,202)(122,203)(123,204)(124,205)(125,206)(126,207)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,141)(138,142)(139,143)(140,144)(169,212)(170,213)(171,214)(172,215)(173,216)(174,217)(175,218)(176,219)(177,220)(178,221)(179,222)(180,223)(181,224)(182,211), (1,211)(2,212)(3,213)(4,214)(5,215)(6,216)(7,217)(8,218)(9,219)(10,220)(11,221)(12,222)(13,223)(14,224)(15,126)(16,113)(17,114)(18,115)(19,116)(20,117)(21,118)(22,119)(23,120)(24,121)(25,122)(26,123)(27,124)(28,125)(29,180)(30,181)(31,182)(32,169)(33,170)(34,171)(35,172)(36,173)(37,174)(38,175)(39,176)(40,177)(41,178)(42,179)(43,206)(44,207)(45,208)(46,209)(47,210)(48,197)(49,198)(50,199)(51,200)(52,201)(53,202)(54,203)(55,204)(56,205)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,127)(64,128)(65,129)(66,130)(67,131)(68,132)(69,133)(70,134)(71,112)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111)(85,165)(86,166)(87,167)(88,168)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,161)(96,162)(97,163)(98,164)(141,196)(142,183)(143,184)(144,185)(145,186)(146,187)(147,188)(148,189)(149,190)(150,191)(151,192)(152,193)(153,194)(154,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,43,31,28)(2,27,32,56)(3,55,33,26)(4,25,34,54)(5,53,35,24)(6,23,36,52)(7,51,37,22)(8,21,38,50)(9,49,39,20)(10,19,40,48)(11,47,41,18)(12,17,42,46)(13,45,29,16)(14,15,30,44)(57,161,194,73)(58,72,195,160)(59,159,196,71)(60,84,183,158)(61,157,184,83)(62,82,185,156)(63,155,186,81)(64,80,187,168)(65,167,188,79)(66,78,189,166)(67,165,190,77)(68,76,191,164)(69,163,192,75)(70,74,193,162)(85,149,104,131)(86,130,105,148)(87,147,106,129)(88,128,107,146)(89,145,108,127)(90,140,109,144)(91,143,110,139)(92,138,111,142)(93,141,112,137)(94,136,99,154)(95,153,100,135)(96,134,101,152)(97,151,102,133)(98,132,103,150)(113,223,208,180)(114,179,209,222)(115,221,210,178)(116,177,197,220)(117,219,198,176)(118,175,199,218)(119,217,200,174)(120,173,201,216)(121,215,202,172)(122,171,203,214)(123,213,204,170)(124,169,205,212)(125,211,206,182)(126,181,207,224)>;
G:=Group( (2,212)(4,214)(6,216)(8,218)(10,220)(12,222)(14,224)(15,85)(16,166)(17,87)(18,168)(19,89)(20,156)(21,91)(22,158)(23,93)(24,160)(25,95)(26,162)(27,97)(28,164)(30,181)(32,169)(34,171)(36,173)(38,175)(40,177)(42,179)(43,76)(44,104)(45,78)(46,106)(47,80)(48,108)(49,82)(50,110)(51,84)(52,112)(53,72)(54,100)(55,74)(56,102)(57,135)(59,137)(61,139)(63,127)(65,129)(67,131)(69,133)(71,201)(73,203)(75,205)(77,207)(79,209)(81,197)(83,199)(86,113)(88,115)(90,117)(92,119)(94,121)(96,123)(98,125)(99,202)(101,204)(103,206)(105,208)(107,210)(109,198)(111,200)(114,167)(116,155)(118,157)(120,159)(122,161)(124,163)(126,165)(141,196)(143,184)(145,186)(147,188)(149,190)(151,192)(153,194), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,127)(11,128)(12,129)(13,130)(14,131)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,98)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,99)(54,100)(55,101)(56,102)(57,214)(58,215)(59,216)(60,217)(61,218)(62,219)(63,220)(64,221)(65,222)(66,223)(67,224)(68,211)(69,212)(70,213)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,197)(82,198)(83,199)(84,200)(113,166)(114,167)(115,168)(116,155)(117,156)(118,157)(119,158)(120,159)(121,160)(122,161)(123,162)(124,163)(125,164)(126,165)(169,192)(170,193)(171,194)(172,195)(173,196)(174,183)(175,184)(176,185)(177,186)(178,187)(179,188)(180,189)(181,190)(182,191), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,29)(14,30)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,43)(57,194)(58,195)(59,196)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,155)(82,156)(83,157)(84,158)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,99)(95,100)(96,101)(97,102)(98,103)(113,208)(114,209)(115,210)(116,197)(117,198)(118,199)(119,200)(120,201)(121,202)(122,203)(123,204)(124,205)(125,206)(126,207)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,141)(138,142)(139,143)(140,144)(169,212)(170,213)(171,214)(172,215)(173,216)(174,217)(175,218)(176,219)(177,220)(178,221)(179,222)(180,223)(181,224)(182,211), (1,211)(2,212)(3,213)(4,214)(5,215)(6,216)(7,217)(8,218)(9,219)(10,220)(11,221)(12,222)(13,223)(14,224)(15,126)(16,113)(17,114)(18,115)(19,116)(20,117)(21,118)(22,119)(23,120)(24,121)(25,122)(26,123)(27,124)(28,125)(29,180)(30,181)(31,182)(32,169)(33,170)(34,171)(35,172)(36,173)(37,174)(38,175)(39,176)(40,177)(41,178)(42,179)(43,206)(44,207)(45,208)(46,209)(47,210)(48,197)(49,198)(50,199)(51,200)(52,201)(53,202)(54,203)(55,204)(56,205)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,127)(64,128)(65,129)(66,130)(67,131)(68,132)(69,133)(70,134)(71,112)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111)(85,165)(86,166)(87,167)(88,168)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,161)(96,162)(97,163)(98,164)(141,196)(142,183)(143,184)(144,185)(145,186)(146,187)(147,188)(148,189)(149,190)(150,191)(151,192)(152,193)(153,194)(154,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,43,31,28)(2,27,32,56)(3,55,33,26)(4,25,34,54)(5,53,35,24)(6,23,36,52)(7,51,37,22)(8,21,38,50)(9,49,39,20)(10,19,40,48)(11,47,41,18)(12,17,42,46)(13,45,29,16)(14,15,30,44)(57,161,194,73)(58,72,195,160)(59,159,196,71)(60,84,183,158)(61,157,184,83)(62,82,185,156)(63,155,186,81)(64,80,187,168)(65,167,188,79)(66,78,189,166)(67,165,190,77)(68,76,191,164)(69,163,192,75)(70,74,193,162)(85,149,104,131)(86,130,105,148)(87,147,106,129)(88,128,107,146)(89,145,108,127)(90,140,109,144)(91,143,110,139)(92,138,111,142)(93,141,112,137)(94,136,99,154)(95,153,100,135)(96,134,101,152)(97,151,102,133)(98,132,103,150)(113,223,208,180)(114,179,209,222)(115,221,210,178)(116,177,197,220)(117,219,198,176)(118,175,199,218)(119,217,200,174)(120,173,201,216)(121,215,202,172)(122,171,203,214)(123,213,204,170)(124,169,205,212)(125,211,206,182)(126,181,207,224) );
G=PermutationGroup([[(2,212),(4,214),(6,216),(8,218),(10,220),(12,222),(14,224),(15,85),(16,166),(17,87),(18,168),(19,89),(20,156),(21,91),(22,158),(23,93),(24,160),(25,95),(26,162),(27,97),(28,164),(30,181),(32,169),(34,171),(36,173),(38,175),(40,177),(42,179),(43,76),(44,104),(45,78),(46,106),(47,80),(48,108),(49,82),(50,110),(51,84),(52,112),(53,72),(54,100),(55,74),(56,102),(57,135),(59,137),(61,139),(63,127),(65,129),(67,131),(69,133),(71,201),(73,203),(75,205),(77,207),(79,209),(81,197),(83,199),(86,113),(88,115),(90,117),(92,119),(94,121),(96,123),(98,125),(99,202),(101,204),(103,206),(105,208),(107,210),(109,198),(111,200),(114,167),(116,155),(118,157),(120,159),(122,161),(124,163),(126,165),(141,196),(143,184),(145,186),(147,188),(149,190),(151,192),(153,194)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,127),(11,128),(12,129),(13,130),(14,131),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,97),(28,98),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,99),(54,100),(55,101),(56,102),(57,214),(58,215),(59,216),(60,217),(61,218),(62,219),(63,220),(64,221),(65,222),(66,223),(67,224),(68,211),(69,212),(70,213),(71,201),(72,202),(73,203),(74,204),(75,205),(76,206),(77,207),(78,208),(79,209),(80,210),(81,197),(82,198),(83,199),(84,200),(113,166),(114,167),(115,168),(116,155),(117,156),(118,157),(119,158),(120,159),(121,160),(122,161),(123,162),(124,163),(125,164),(126,165),(169,192),(170,193),(171,194),(172,195),(173,196),(174,183),(175,184),(176,185),(177,186),(178,187),(179,188),(180,189),(181,190),(182,191)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,29),(14,30),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,43),(57,194),(58,195),(59,196),(60,183),(61,184),(62,185),(63,186),(64,187),(65,188),(66,189),(67,190),(68,191),(69,192),(70,193),(71,159),(72,160),(73,161),(74,162),(75,163),(76,164),(77,165),(78,166),(79,167),(80,168),(81,155),(82,156),(83,157),(84,158),(85,104),(86,105),(87,106),(88,107),(89,108),(90,109),(91,110),(92,111),(93,112),(94,99),(95,100),(96,101),(97,102),(98,103),(113,208),(114,209),(115,210),(116,197),(117,198),(118,199),(119,200),(120,201),(121,202),(122,203),(123,204),(124,205),(125,206),(126,207),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,153),(136,154),(137,141),(138,142),(139,143),(140,144),(169,212),(170,213),(171,214),(172,215),(173,216),(174,217),(175,218),(176,219),(177,220),(178,221),(179,222),(180,223),(181,224),(182,211)], [(1,211),(2,212),(3,213),(4,214),(5,215),(6,216),(7,217),(8,218),(9,219),(10,220),(11,221),(12,222),(13,223),(14,224),(15,126),(16,113),(17,114),(18,115),(19,116),(20,117),(21,118),(22,119),(23,120),(24,121),(25,122),(26,123),(27,124),(28,125),(29,180),(30,181),(31,182),(32,169),(33,170),(34,171),(35,172),(36,173),(37,174),(38,175),(39,176),(40,177),(41,178),(42,179),(43,206),(44,207),(45,208),(46,209),(47,210),(48,197),(49,198),(50,199),(51,200),(52,201),(53,202),(54,203),(55,204),(56,205),(57,135),(58,136),(59,137),(60,138),(61,139),(62,140),(63,127),(64,128),(65,129),(66,130),(67,131),(68,132),(69,133),(70,134),(71,112),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,108),(82,109),(83,110),(84,111),(85,165),(86,166),(87,167),(88,168),(89,155),(90,156),(91,157),(92,158),(93,159),(94,160),(95,161),(96,162),(97,163),(98,164),(141,196),(142,183),(143,184),(144,185),(145,186),(146,187),(147,188),(148,189),(149,190),(150,191),(151,192),(152,193),(153,194),(154,195)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,43,31,28),(2,27,32,56),(3,55,33,26),(4,25,34,54),(5,53,35,24),(6,23,36,52),(7,51,37,22),(8,21,38,50),(9,49,39,20),(10,19,40,48),(11,47,41,18),(12,17,42,46),(13,45,29,16),(14,15,30,44),(57,161,194,73),(58,72,195,160),(59,159,196,71),(60,84,183,158),(61,157,184,83),(62,82,185,156),(63,155,186,81),(64,80,187,168),(65,167,188,79),(66,78,189,166),(67,165,190,77),(68,76,191,164),(69,163,192,75),(70,74,193,162),(85,149,104,131),(86,130,105,148),(87,147,106,129),(88,128,107,146),(89,145,108,127),(90,140,109,144),(91,143,110,139),(92,138,111,142),(93,141,112,137),(94,136,99,154),(95,153,100,135),(96,134,101,152),(97,151,102,133),(98,132,103,150),(113,223,208,180),(114,179,209,222),(115,221,210,178),(116,177,197,220),(117,219,198,176),(118,175,199,218),(119,217,200,174),(120,173,201,216),(121,215,202,172),(122,171,203,214),(123,213,204,170),(124,169,205,212),(125,211,206,182),(126,181,207,224)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | ··· | 4H | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AS | 28A | ··· | 28L |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 28 | 28 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C7⋊D4 | D4×D7 | D4⋊2D7 |
kernel | C24.21D14 | C14.C42 | C2×D14⋊C4 | C2×C23.D7 | C22×C7⋊D4 | D4×C2×C14 | C2×Dic7 | C2×C28 | C22×D7 | C22×C14 | C22×D4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 2 | 4 | 3 | 2 | 3 | 6 | 12 | 24 | 9 | 3 |
Matrix representation of C24.21D14 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
19 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 21 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
23 | 0 | 0 | 0 | 0 | 0 |
5 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 28 |
0 | 0 | 0 | 0 | 15 | 4 |
24 | 28 | 0 | 0 | 0 | 0 |
24 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 24 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 20 | 17 |
G:=sub<GL(6,GF(29))| [1,19,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,21,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[23,5,0,0,0,0,0,24,0,0,0,0,0,0,5,0,0,0,0,0,0,23,0,0,0,0,0,0,25,15,0,0,0,0,28,4],[24,24,0,0,0,0,28,5,0,0,0,0,0,0,0,24,0,0,0,0,6,0,0,0,0,0,0,0,12,20,0,0,0,0,0,17] >;
C24.21D14 in GAP, Magma, Sage, TeX
C_2^4._{21}D_{14}
% in TeX
G:=Group("C2^4.21D14");
// GroupNames label
G:=SmallGroup(448,757);
// by ID
G=gap.SmallGroup(448,757);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=1,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations